Pre-class Warm-up!!!
Let A be the matrix $\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
Which of the following vectors v have the property that $A v$ is a scalar multiple of v ?
a. $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
b. $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
c. $v=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad \checkmark$
d. None of the above vectors

Is $\left[\begin{array}{ll}34 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 4\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ 0\end{array}\right] ? N_{0}$
Ls $\left(\begin{array}{l}3 \\ 4 \\ 4\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}7 \\ 7\end{array}\right]=7\left[\begin{array}{l}1 \\ 1\end{array}\right]$? Yes

6.1 Eigenvalues and eigenvectors

New vocabulary:

- eigenvalues and eigenvectors
- the characteristic polynomial of a matrix

We learn:

- how to find the eigenvalues and eigenvectors as the result of a theorem about the characteristic polynomial

What we don't learn:

- why we should be interested in e-values and e-vectors

Definition of an eigenvector and eigenvalue of an nxn matrix A .
We say that a rector v is an eigenvector of A with eigenvalue λ if $A v=\lambda_{v}$ and $v \neq 0 . \lambda$ is a number.

Example: Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$
Try $v=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad A v=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}7 \\ 7\end{array}\right]=7\left[\begin{array}{l}1 \\ \hline\end{array}\right]$ so $\left(\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector of A with e-ralve 7 .
Try $v=\left[\begin{array}{c}1 \\ -1\end{array}\right] \quad A v=\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{r}-1 \\ 1\end{array}\right]=(-1)\left(\begin{array}{c}1 \\ -1\end{array}\right]$ so $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an e-vector with e-value - 1

Definition of the characteristic polynomial of A.
This is the polynomial $\operatorname{det}(A-\lambda I)$ where λ is a variable and I is the $n \times n$ identity matrix
Example: Let $A=\left[\begin{array}{ll}3 & 4 \\ 4 & 3\end{array}\right]$. The eharactorstic
polynomial is $\operatorname{det}\left(\left[\begin{array}{cc}3 & 4 \\ 4 & 3\end{array}\right]-\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]\right)$

$$
=\operatorname{det}\left[\begin{array}{cc}
3-\lambda & 4 \\
4 & 3-\lambda
\end{array}\right]=(3-\lambda)^{2}-16=\lambda^{2}-6 \lambda-7
$$

$=(\lambda-7)(\lambda+1)$

Its roots are 7,-1

Theorem. For an $n \times n$ matrix A, the eigenvalues of A are precisely the solutions of the characteristic equation

$$
\operatorname{det}(A-\lambda \lambda)=0
$$

Proof $\operatorname{det}(A-\lambda I)=0$
$\Leftrightarrow A-\lambda I$ is not invertible
\Leftrightarrow many things e.g. The echelon form as a zero vow
\Leftrightarrow there is a free variable
$\Leftrightarrow(A-\lambda I) v=0$ hat non-zero solution v there is non-zer vv with there is a nom-zeo v with
$\Leftrightarrow A^{\text {there }} \mathrm{Av}-\lambda I v=0 \Leftrightarrow A v=\lambda v$
\Leftrightarrow there is a non-zero
there is a non-zero
\checkmark which is ane -vector with e-value λ.
The numbers λ that appear al e-values are precisely the solutions to the cheracteisiciequatin.

To find the eigenvalues of A : We solve

$$
\operatorname{det}(A-\lambda I)=0
$$

To find the eigenvectors of A : find the eigenvalues. Foreach e-value λ, solve $A_{v}=\lambda v, \Delta v(A-\lambda I) v=0$. Find a bars for $\operatorname{Null}(A-\lambda I)$
Question like 6.1, 1-26.
Find the eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{ll}
3 & 4 \\
4 & 3
\end{array}\right]
$$

Solution: Step 1. The characteristic polynoment if $\lambda^{2}-6 \lambda-7=(\lambda-7)(\lambda+1)$
The e-valuel are 7, -1
Step 2. We solve $(A-\lambda I) v=0$,

$$
\lambda=7: A-\lambda I=\left[\begin{array}{cc}
-4 & 4 \\
4 & -4
\end{array}\right]
$$

To findite nullspace: Echelon form $\left[\begin{array}{cc}-4 & 4 \\ 0 & 0\end{array}\right]$. Basis for nullspace: $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ $\lambda=-1 \quad A-\lambda I=\left[\begin{array}{ll}4 & 4 \\ 4 & 4\end{array}\right] \quad$ Echelon for $\left[\begin{array}{ll}4 & 4 \\ 0 & 0\end{array}\right]$. Burris for null space $\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

We obtain two e-values 7, 1 with e-vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]$ respectively.
6.1 question 21.

Find the eigenvalues and eigenvectors. Find a basis for each eigenspace of dimension 2 or larger. $A=\left[\begin{array}{rrr}4 & -3 & 1 \\ 2 & -1 & 1 \\ 0 & 0 & 2\end{array}\right]$
Solution Char, poly; $\operatorname{det}\left[\begin{array}{ccc}4-\lambda & -3 & 1 \\ 2 & -1-\lambda & 1 \\ 0 & 0 & 2-\lambda\end{array}\right]$ $=(2-\lambda) \operatorname{det}\left(\begin{array}{cc}4-\lambda & -3 \\ 2 & -1-\lambda\end{array}\right)=(2-\lambda)\left(\lambda^{2}-3 \lambda \sim 4+6\right)$

$$
=(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right)=-\lambda^{3}+5 \lambda^{2}-8 \lambda+4
$$

Find the roots. Try to find some root $\lambda=0$? No $\lambda=1$ Yes!! $\lambda-1$ is a factor

$$
\begin{aligned}
\left(\lambda^{3}-5 \lambda^{2}+8 \lambda-4\right) & =(\lambda-1)\left(\lambda^{2}-4 \lambda+4\right) \\
& =(\lambda-1)(\lambda-2)^{2}
\end{aligned}
$$

Find the eigempaces:
$\lambda=2$ find the nullspace of

$$
A-2 I=\left[\begin{array}{ccc}
2 & -3 & 1 \\
2 & -3 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Echelon form $\left[\begin{array}{ccc}2 & -3 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. Two free
Basis for the $\lambda=2 e-s p a c e$

$$
\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1
\end{array}\right]>\left[\begin{array}{c}
3 / 2 \\
1 \\
0
\end{array}\right]
$$

for $\lambda=1$ we get an e-vecter $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

Question: For the identity matrix $I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

1. How many distinct eigenvalues does I have? 1 occurs with mult 3, Answ 1.
2. How many independent eigenvectors can we find for 1? Answ. 3
a. 0
b. 1
c. 2
d. 3
e. 4 or more

Another question: Same questions 1 and 2 for the matrix

